Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376390

RESUMO

The adaptive dynamics of evolving microbial populations takes place on a complex fitness landscape generated by epistatic interactions. The population generically consists of multiple competing strains, a phenomenon known as clonal interference. Microscopic epistasis and clonal interference are central aspects of evolution in microbes, but their combined effects on the functional form of the population's mean fitness are poorly understood. Here, we develop a computational method that resolves the full microscopic complexity of a simulated evolving population subject to a standard serial dilution protocol. Through extensive numerical experimentation, we find that stronger microscopic epistasis gives rise to fitness trajectories with slower growth independent of the number of competing strains, which we quantify with power-law fits and understand mechanistically via a random walk model that neglects dynamical correlations between genes. We show that increasing the level of clonal interference leads to fitness trajectories with faster growth (in functional form) without microscopic epistasis, but leaves the rate of growth invariant when epistasis is sufficiently strong, indicating that the role of clonal interference depends intimately on the underlying fitness landscape. The simulation package for this work may be found at https://github.com/nmboffi/spin_glass_evodyn.


Assuntos
Epistasia Genética , Exercício Físico , Caminhada , Simulação por Computador , Folhas de Planta
2.
ArXiv ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38045483

RESUMO

Cell growth and gene expression, two essential elements of all living systems, have long been the focus of biophysical interrogation. Advances in experimental single-cell methods have invigorated theoretical studies into these processes. However, until recently, there was little dialog between the two areas of study. In particular, most theoretical models for gene regulation assumed gene activity to be oblivious to the progression of the cell cycle between birth and division. But, in fact, there are numerous ways in which the periodic character of all cellular observables can modulate gene expression. The molecular factors required for transcription and translation-RNA polymerase, transcription factors, ribosomes-increase in number during the cell cycle, but are also diluted due to the continuous increase in cell volume. The replication of the genome changes the dosage of those same cellular players but also provides competing targets for regulatory binding. Finally, cell division reduces their number again, and so forth. Stochasticity is inherent to all these biological processes, manifested in fluctuations in the synthesis and degradation of new cellular components as well as the random partitioning of molecules at each cell division event. The notion of gene expression as stationary is thus hard to justify. In this review, we survey the emerging paradigm of cell-cycle regulated gene expression, with an emphasis on the global expression patterns rather than gene-specific regulation. We discuss recent experimental reports where cell growth and gene expression were simultaneously measured in individual cells, providing first glimpses into the coupling between the two, and motivating several questions. How do the levels of gene expression products - mRNA and protein - scale with the cell volume and cell-cycle progression? What are the molecular origins of the observed scaling laws, and when do they break down to yield non-canonical behavior? What are the consequences of cell-cycle dependence for the heterogeneity ("noise") in gene expression within a cell population? While the experimental findings, not surprisingly, differ among genes, organisms, and environmental conditions, several theoretical models have emerged that attempt to reconcile these differences and form a unifying framework for understanding gene expression in growing cells.

3.
Phys Rev E ; 108(3-1): 034402, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37849168

RESUMO

In the past decade, great strides have been made to quantify the dynamics of single-cell growth and division in microbes. In order to make sense of the evolutionary history of these organisms, we must understand how features of single-cell growth and division influence evolutionary dynamics. This requires us to connect processes on the single-cell scale to population dynamics. Here, we consider a model of microbial growth in finite populations which explicitly incorporates the single-cell dynamics. We study the behavior of a mutant population in such a model and ask: can the evolutionary dynamics be coarse-grained so that the forces of natural selection and genetic drift can be expressed in terms of the long-term fitness? We show that it is in fact not possible, as there is no way to define a single fitness parameter (or reproductive rate) that defines the fate of an organism even in a constant environment. This is due to fluctuations in the population averaged division rate. As a result, various details of the single-cell dynamics affect the fate of a new mutant independently from how they affect the long-term growth rate of the mutant population. In particular, we show that in the case of neutral mutations, variability in generation times increases the rate of genetic drift, and in the case of beneficial mutations, variability decreases its fixation probability. Furthermore, we explain the source of the persistent division rate fluctuations and provide analytic solutions for the fixation probability as a multispecies generalization of the Euler-Lotka equation.


Assuntos
Evolução Biológica , Genética Populacional , Deriva Genética , Dinâmica Populacional , Seleção Genética , Modelos Genéticos , Mutação
4.
Curr Biol ; 33(22): 4880-4892.e14, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37879333

RESUMO

Bacteria undergo cycles of growth and starvation to which they must adapt swiftly. One important strategy for adjusting growth rates relies on ribosomal levels. Although high ribosomal levels are required for fast growth, their dynamics during starvation remain unclear. Here, we analyzed ribosomal RNA (rRNA) content of individual Salmonella cells by using fluorescence in situ hybridization (rRNA-FISH) and measured a dramatic decrease in rRNA numbers only in a subpopulation during nutrient limitation, resulting in a bimodal distribution of cells with high and low rRNA content. During nutritional upshifts, the two subpopulations were associated with distinct phenotypes. Using a transposon screen coupled with rRNA-FISH, we identified two mutants, DksA and RNase I, acting on rRNA transcription shutdown and degradation, which abolished the formation of the subpopulation with low rRNA content. Our work identifies a bacterial mechanism for regulation of ribosomal bimodality that may be beneficial for population survival during starvation.


Assuntos
RNA Ribossômico , Ribossomos , RNA Ribossômico/genética , Hibridização in Situ Fluorescente , Ribossomos/metabolismo , Salmonella/genética , Salmonella/metabolismo , Estresse Fisiológico
5.
bioRxiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37425711

RESUMO

Neutrophils exhibit self-amplified swarming to sites of injury and infection. How swarming is controlled to ensure the proper level of neutrophil recruitment is unknown. Using an ex vivo model of infection, we find that human neutrophils use active relay to generate multiple pulsatile waves of swarming signals. Unlike classic active relay systems such as action potentials, neutrophil swarming relay waves are self-extinguishing, limiting the spatial range of cell recruitment. We identify an NADPH-oxidase-based negative feedback loop that is needed for this self-extinguishing behavior. Through this circuit, neutrophils adjust the number and size of swarming waves for homeostatic levels of cell recruitment over a wide range of initial cell densities. We link a broken homeostat to neutrophil over-recruitment in the context of human chronic granulomatous disease.

6.
Phys Rev Lett ; 130(25): 258201, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37418710

RESUMO

The statistics of noise emitted by ultrathin crumpled sheets is measured while they exhibit logarithmic relaxations under load. We find that the logarithmic relaxation advanced via a series of discrete, audible, micromechanical events that are log-Poisson distributed (i.e., the process becomes a Poisson process when time stamps are replaced by their logarithms). The analysis places constraints on the possible mechanisms underlying the glasslike slow relaxation and memory retention in these systems.

7.
bioRxiv ; 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37292927

RESUMO

The ability of bacterial pathogens to regulate growth is crucial to control homeostasis, virulence, and drug response. Yet, we do not understand the growth and cell cycle behaviors of Mycobacterium tuberculosis (Mtb), a slow-growing pathogen, at the single-cell level. Here, we use time-lapse imaging and mathematical modeling to characterize these fundamental properties of Mtb. Whereas most organisms grow exponentially at the single-cell level, we find that Mtb exhibits a unique linear growth mode. Mtb growth characteristics are highly variable from cell-to-cell, notably in their growth speeds, cell cycle timing, and cell sizes. Together, our study demonstrates that growth behavior of Mtb diverges from what we have learned from model bacteria. Instead, Mtb generates a heterogeneous population while growing slowly and linearly. Our study provides a new level of detail into how Mtb grows and creates heterogeneity, and motivates more studies of growth behaviors in bacterial pathogens.

8.
Soft Matter ; 19(12): 2224-2230, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36884021

RESUMO

Many bacterial species are helical in shape, including the widespread pathogen H. pylori. Motivated by recent experiments on H. pylori showing that cell wall synthesis is not uniform [J. A. Taylor, et al., eLife, 2020, 9, e52482], we investigate the possible formation of helical cell shape induced by elastic heterogeneity. We show, experimentally and theoretically, that helical morphogenesis can be produced by pressurizing an elastic cylindrical vessel with helical reinforced lines. The properties of the pressurized helix are highly dependent on the initial helical angle of the reinforced region. We find that steep angles result in crooked helices with, surprisingly, a reduced end-to-end distance upon pressurization. This work helps explain the possible mechanisms for the generation of helical cell morphologies and may inspire the design of novel pressure-controlled helical actuators.


Assuntos
Bactérias , Bactérias/citologia , Pressão , Helicobacter pylori
9.
Proc Natl Acad Sci U S A ; 120(11): e2214796120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36897981

RESUMO

How cells regulate their cell cycles is a central question for cell biology. Models of cell size homeostasis have been proposed for bacteria, archaea, yeast, plant, and mammalian cells. New experiments bring forth high volumes of data suitable for testing existing models of cell size regulation and proposing new mechanisms. In this paper, we use conditional independence tests in conjunction with data of cell size at key cell cycle events (birth, initiation of DNA replication, and constriction) in the model bacterium Escherichia coli to select between the competing cell cycle models. We find that in all growth conditions that we study, the division event is controlled by the onset of constriction at midcell. In slow growth, we corroborate a model where replication-related processes control the onset of constriction at midcell. In faster growth, we find that the onset of constriction is affected by additional cues beyond DNA replication. Finally, we also find evidence for the presence of additional cues triggering initiations of DNA replication apart from the conventional notion where the mother cells solely determine the initiation event in the daughter cells via an adder per origin model. The use of conditional independence tests is a different approach in the context of understanding cell cycle regulation and it can be used in future studies to further explore the causal links between cell events.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Ciclo Celular , Divisão Celular , Replicação do DNA , Proteínas de Escherichia coli/metabolismo
10.
BMC Biol ; 20(1): 269, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36464673

RESUMO

BACKGROUND: Double-strand break repair (DSBR) is a highly regulated process involving dozens of proteins acting in a defined order to repair a DNA lesion that is fatal for any living cell. Model organisms such as Saccharomyces cerevisiae have been used to study the mechanisms underlying DSBR, including factors influencing its efficiency such as the presence of distinct combinations of microsatellites and endonucleases, mainly by bulk analysis of millions of cells undergoing repair of a broken chromosome. Here, we use a microfluidic device to demonstrate in yeast that DSBR may be studied at a single-cell level in a time-resolved manner, on a large number of independent lineages undergoing repair. RESULTS: We used engineered S. cerevisiae cells in which GFP is expressed following the successful repair of a DSB induced by Cas9 or Cpf1 endonucleases, and different genetic backgrounds were screened to detect key events leading to the DSBR efficiency. Per condition, the progenies of 80-150 individual cells were analyzed over 24 h. The observed DSBR dynamics, which revealed heterogeneity of individual cell fates and their contributions to global repair efficacy, was confronted with a coupled differential equation model to obtain repair process rates. Good agreement was found between the mathematical model and experimental results at different scales, and quantitative comparisons of the different experimental conditions with image analysis of cell shape enabled the identification of three types of DSB repair events previously not recognized: high-efficacy error-free, low-efficacy error-free, and low-efficacy error-prone repair. CONCLUSIONS: Our analysis paves the way to a significant advance in understanding the complex molecular mechanism of DSB repair, with potential implications beyond yeast cell biology. This multiscale and multidisciplinary approach more generally allows unique insights into the relation between in vivo microscopic processes within each cell and their impact on the population dynamics, which were inaccessible by previous approaches using molecular genetics tools alone.


Assuntos
Microfluídica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Reparo do DNA , Diferenciação Celular , Endonucleases
11.
Phys Rev E ; 105(6-1): 064503, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35854610

RESUMO

Dynamic instability-the growth, catastrophe, and shrinkage of quasi-one-dimensional filaments-has been observed in multiple biopolymers. Scientists have long understood the catastrophic cessation of growth and subsequent depolymerization as arising from the interplay of hydrolysis and polymerization at the tip of the polymer. Here we show that for a broad class of catastrophe models, the expected catastrophe time distribution is exponential. We show that the distribution shape is insensitive to noise, but that depletion of monomers from a finite pool can dramatically change the distribution shape by reducing the polymerization rate. We derive a form for this finite-pool catastrophe time distribution and show that finite-pool effects can be important even when the depletion of monomers does not greatly alter the polymerization rate.

12.
Phys Rev Lett ; 128(23): 234501, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35749180

RESUMO

We study the dynamics of flow networks in porous media using two and three dimensional pore-network models. We consider a class of erosion dynamics for a single phase flow with no deposition, chemical reactions, or topology changes assuming a constitutive law depending on flow rate, local velocities, or shear stress at the walls. We show that depending on the erosion law, the flow may become uniform and homogenized or become unstable and develop channels. By defining an order parameter capturing these different behaviors we show that a phase transition occurs depending on the erosion dynamics. Using a simple model, we identify quantitative criteria to distinguish these regimes and correctly predict the fate of the network, and discuss the experimental relevance of our result.

13.
Cell Rep ; 38(12): 110539, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35320717

RESUMO

Escherichia coli cell cycle features two critical cell-cycle checkpoints: initiation of replication and the onset of constriction. While the initiation of DNA replication has been extensively studied, it is less clear what triggers the onset of constriction and when exactly it occurs during the cell cycle. Here, using high-throughput fluorescence microscopy in microfluidic devices, we determine the timing for the onset of constriction relative to the replication cycle in different growth rates. Our single-cell data and modeling indicate that the initiation of constriction is coupled to replication-related processes in slow growth conditions. Furthermore, our data suggest that this coupling involves the mid-cell chromosome blocking the onset of constriction via some form of nucleoid occlusion occurring independently of SlmA and the Ter linkage proteins. This work highlights the coupling between replication and division cycles and brings up a new nucleoid mediated control mechanism in E. coli.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Transporte/metabolismo , Divisão Celular , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Constrição , Replicação do DNA , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
14.
Phys Rev Lett ; 128(5): 058101, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35179922

RESUMO

A thin-walled tube, e.g., a drinking straw, manifests an instability when bent by localizing the curvature change in a small region. This instability has been extensively studied since the seminal work of Brazier nearly a century ago. However, the scenario of pressurized tubes has received much less attention. Motivated by rod-shaped bacteria such as E. coli, whose cell walls are much thinner than their radius and are subject to a substantial internal pressure, we study, theoretically, how this instability is affected by this internal pressure. In the parameter range relevant to the bacteria, we find that the internal pressure significantly postpones the onset of the instability, while the bending stiffness of the cell wall has almost no influence. This study suggests a new method to infer turgor pressure in rod-shaped bacteria from bending experiments.


Assuntos
Bactérias , Modelos Teóricos , Fenômenos Biomecânicos , Parede Celular , Modelos Biológicos , Estresse Mecânico
15.
Genetics ; 220(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35171996

RESUMO

Adaptation dynamics on fitness landscapes is often studied theoretically in the strong-selection, weak-mutation regime. However, in a large population, multiple beneficial mutants can emerge before any of them fixes in the population. Competition between mutants is known as clonal interference, and while it is known to slow down the rate of adaptation (when compared to the strong-selection, weak-mutation model with the same parameters), how it affects the shape of long-term fitness trajectories in the presence of epistasis is an open question. Here, by considering how changes in fixation probabilities arising from weak clonal interference affect the dynamics of adaptation on fitness-parameterized landscapes, we find that the change in the shape of fitness trajectory arises only through changes in the supply of beneficial mutations (or equivalently, the beneficial mutation rate). Furthermore, a depletion of beneficial mutations as a population climbs up the fitness landscape can speed up the rescaled fitness trajectory (where adaptation speed is measured relative to its value at the start of the experiment), while an enhancement of the beneficial mutation rate does the opposite of slowing it down. Our findings suggest that by carrying out evolution experiments in both regimes (with and without clonal interference), one could potentially distinguish the different sources of macroscopic epistasis (fitness effect of mutations vs change in fraction of beneficial mutations).


Assuntos
Epistasia Genética , Aptidão Genética , Adaptação Fisiológica/genética , Modelos Genéticos , Mutação
16.
Elife ; 102021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854811

RESUMO

Collection of high-throughput data has become prevalent in biology. Large datasets allow the use of statistical constructs such as binning and linear regression to quantify relationships between variables and hypothesize underlying biological mechanisms based on it. We discuss several such examples in relation to single-cell data and cellular growth. In particular, we show instances where what appears to be ordinary use of these statistical methods leads to incorrect conclusions such as growth being non-exponential as opposed to exponential and vice versa. We propose that the data analysis and its interpretation should be done in the context of a generative model, if possible. In this way, the statistical methods can be validated either analytically or against synthetic data generated via the use of the model, leading to a consistent method for inferring biological mechanisms from data. On applying the validated methods of data analysis to infer cellular growth on our experimental data, we find the growth of length in E. coli to be non-exponential. Our analysis shows that in the later stages of the cell cycle the growth rate is faster than exponential.


All cells ­ from bacteria to humans ­ tightly control their size as they grow and divide. Cells can also change the speed at which they grow, and the pattern of how fast a cell grows with time is called 'mode of growth'. Mode of growth can be 'linear', when cells increase their size at a constant rate, or 'exponential', when cells increase their size at a rate proportional to their current size. A cell's mode of growth influences its inner workings, so identifying how a cell grows can reveal information about how a cell will behave. Scientists can measure the size of cells as they age and identify their mode of growth using single cell imaging techniques. Unfortunately, the statistical methods available to analyze the large amounts of data generated in these experiments can lead to incorrect conclusions. Specifically, Kar et al. found that scientists had been using specific types of plots to analyze growth data that were prone to these errors, and may lead to misinterpreting exponential growth as linear and vice versa. This discrepancy can be resolved by ensuring that the plots used to determine the mode of growth are adequate for this analysis. But how can the adequacy of a plot be tested? One way to do this is to generate synthetic data from a known model, which can have a specific and known mode of growth, and using this data to test the different plots. Kar et al. developed such a 'generative model' to produce synthetic data similar to the experimental data, and used these data to determine which plots are best suited to determine growth mode. Once they had validated the best statistical methods for studying mode of growth, Kar et al. applied these methods to growth data from the bacterium Escherichia coli. This showed that these cells have a form of growth called 'super-exponential growth'. These findings identify a strategy to validate statistical methods used to analyze cell growth data. Furthermore, this strategy ­ the use of generative models to produce synthetic data to test the accuracy of statistical methods ­ could be used in other areas of biology to validate statistical approaches.


Assuntos
Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Crescimento Celular , Proliferação de Células/fisiologia , Escherichia coli/crescimento & desenvolvimento , Modelos Teóricos , Interpretação Estatística de Dados
17.
Rep Prog Phys ; 84(11)2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34825896

RESUMO

The observation that phenotypic variability is ubiquitous in isogenic populations has led to a multitude of experimental and theoretical studies seeking to probe the causes and consequences of this variability. Whether it be in the context of antibiotic treatments or exponential growth in constant environments, non-genetic variability has significant effects on population dynamics. Here, we review research that elucidates the relationship between cell-to-cell variability and population dynamics. After summarizing the relevant experimental observations, we discuss models of bet-hedging and phenotypic switching. In the context of these models, we discuss how switching between phenotypes at the single-cell level can help populations survive in uncertain environments. Next, we review more fine-grained models of phenotypic variability where the relationship between single-cell growth rates, generation times and cell sizes is explicitly considered. Variability in these traits can have significant effects on the population dynamics, even in a constant environment. We show how these effects can be highly sensitive to the underlying model assumptions. We close by discussing a number of open questions, such as how environmental and intrinsic variability interact and what the role of non-genetic variability in evolutionary dynamics is.


Assuntos
Meio Ambiente , Seleção Genética , Evolução Biológica , Fenótipo , Dinâmica Populacional
18.
Front Microbiol ; 12: 712007, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34421870

RESUMO

Mechanical rupture, or lysis, of the cytoplasmic membrane is a common cell death pathway in bacteria occurring in response to ß-lactam antibiotics. A better understanding of the cellular design principles governing the susceptibility and response of individual cells to lysis could indicate methods of potentiating ß-lactam antibiotics and clarify relevant aspects of cellular physiology. Here, we take a single-cell approach to bacterial cell lysis to examine three cellular features-turgor pressure, mechanosensitive channels, and cell shape changes-that are expected to modulate lysis. We develop a mechanical model of bacterial cell lysis and experimentally analyze the dynamics of lysis in hundreds of single Escherichia coli cells. We find that turgor pressure is the only factor, of these three cellular features, which robustly modulates lysis. We show that mechanosensitive channels do not modulate lysis due to insufficiently fast solute outflow, and that cell shape changes result in more severe cellular lesions but do not influence the dynamics of lysis. These results inform a single-cell view of bacterial cell lysis and underscore approaches of combatting antibiotic tolerance to ß-lactams aimed at targeting cellular turgor.

19.
Phys Rev E ; 104(1-1): 014406, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412293

RESUMO

Scientists have observed and studied diffusive waves in contexts as disparate as population genetics and cell signaling. Often, these waves are propagated by discrete entities or agents, such as individual cells in the case of cell signaling. For a broad class of diffusive waves, we characterize the transition between the collective propagation of diffusive waves, in which the wave speed is well described by continuum theory, and the propagation of diffusive waves by individual agents. We show that this transition depends heavily on the dimensionality of the system in which the wave propagates and that disordered systems yield dynamics largely consistent with lattice systems. In some system dimensionalities, the intuition that closely packed sources more accurately mimic a continuum can be grossly violated.

20.
PLoS Comput Biol ; 17(6): e1009080, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34153030

RESUMO

Microbial populations show striking diversity in cell growth morphology and lifecycle; however, our understanding of how these factors influence the growth rate of cell populations remains limited. We use theory and simulations to predict the impact of asymmetric cell division, cell size regulation and single-cell stochasticity on the population growth rate. Our model predicts that coarse-grained noise in the single-cell growth rate λ decreases the population growth rate, as previously seen for symmetrically dividing cells. However, for a given noise in λ we find that dividing asymmetrically can enhance the population growth rate for cells with strong size control (between a "sizer" and an "adder"). To reconcile this finding with the abundance of symmetrically dividing organisms in nature, we propose that additional constraints on cell growth and division must be present which are not included in our model, and we explore the effects of selected extensions thereof. Further, we find that within our model, epigenetically inherited generation times may arise due to size control in asymmetrically dividing cells, providing a possible explanation for recent experimental observations in budding yeast. Taken together, our findings provide insight into the complex effects generated by non-canonical growth morphologies.


Assuntos
Divisão Celular Assimétrica/fisiologia , Modelos Biológicos , Biologia Computacional , Simulação por Computador , Fenômenos Microbiológicos , Saccharomycetales/citologia , Saccharomycetales/fisiologia , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...